
1. Appl.MathsMcchsVol. 51,No. 1, pp.75-80.1993 
Printed in Grent Britain. 

0021~8928/93 S24.00+.00 
0 1993PergmalPreSsLtd 
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Dual variational principles for the steady single-phase and two-phase filtration of an incompressible 

fluid in media with dual porosity are constructed. By a medium with dual porosity, we mean two media, 

which are embedded in one another, with different porosities and permeabilities and which are coupled 

by a fluid crossflow [l]. The principle of minimum energy dissipation [2, 31, which is also used to close 

the equations and to find the structure of generalized forces, is the basis for constructing the variational 

principles. These principles enable one to determine the pressure fields, crossflows and filtration rates 

in the media. For steady single-phase filtration, the variational principles completely define the solution 

of the problem while, in the case of two-phase filtration, they hold for fixed saturations. 

1. WE SHALL construct variational principles in the case of steady single-phase filtration and 
write the continuity equations in the media fand p as 

div e = Q, div ‘lp = -Q (1.1) 

where q, and qp are the rates of filtration of the fluid Q is the crossflow of the fluid from 
medium p into medium f. Since the energy dissipation is governed by the filtration of the fluid 
in media f andp and by the crossflow between the media, the dissipative potential has the form 
Y = Y(q,, qp, Q). In the special case, Y(q,, qP9 Q) = Y,(q,)+ YJq,) + YJQ). 

Here, Y,,Y,, and YQ are the dissipative potentials which characterize the energy dissipation 
due to filtration in the media and due to the crossflow between the media, respectively. The 
dissipative mechanisms defined by the potentials Y,, YP and Yc are assumed to be indepen- 
dent [4]. We shall subsequently assume that the functionals Y, Y,, Yb and ‘yo are convex and 
smooth. It follows from the principle of minimum energy dissipation in the case of steady-state 
processes [2,3], that a minimum of the functional 

is attained in the real field of the variables q,, q, and Q. Here, the required variables must 
satisfy the boundary conditions and the equations of continuity (1.1). 

Let us calculate the variation of the functional (1.2). This variation must be equal to zero at 
the point (q>, q;, Q). On introducing the Lagrange multipliers A, and AP, in order to take 
account of the constraints (l.l), we write 
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After some reduction we obtain 

6 IA = J [(a */a Q&j) 6 Qf + (a */a 4pi-$,i) 6 4Pf + 
n 

+ (a ~/a Q-$ + XP> 6 Q + @iv Q-Q) 6 $ + 

t(divqp+Q)6$,] dil+S Af6qfndr+_ih,6q,ndr (1.4) 
r r 

where q,, and qp. are the normal components of the velocities q, and qp on the boundary r, 
where I the boundary of the domain of the solution of the problem n 

It follows from the equality 

SI,=O (1.5) 

that the coefficients 5 and AP are equal to the pressures p, and pP, taken with the opposite 
sign, and that the system of equations (1.1) holds and 

a */a 'iii = -Pj,L a wa qpi = -P~,~. a wa e =pp-pf (1.6) 

where the first two equations are the laws of filtration while the third is the equation for the 
crossflow. Relationships (1.6) define the structure of the generalized forces X, =-VP,, X, = 
-VP,, X, = pp -p,. The normal rate of filtration or the equality of the pressure to zero must be 
specified on the boundary I for each medium f and p. 

It is seen from (1.4) that, in order to take account of boundary conditions of the form 

it is necessary to minimize the functional 

(1.7) 

(1.8) 

instead of the functional (1.2). 
We shall consider the boundary conditions in greater detail in Sec. 2. Here we merely note 

that the division of the boundary I = I, + IP into the parts I, and I, for each medium may be 
made in various ways. Hence, the variational principle 

inf 11 (e, 9ppt 9) (1.9) 
v qp, QE(l.l)* (1.7) 

is equivalent to satisfying the system of equations (1.1) and (1.6) and the boundary conditions 
(1.7). 

On applying methods of duality [5], we obtain that the problem which is dual to the 
variational problem (1.9) is 

SUP [-I2 @f* PpN (1.10) 
PfiPpEU.7) 

that is 

inf 11 b.r-, qp’ Q> = SUP wz @f. Pp)l 
nfi qp, QE(1.1ht1.7) Pfi PpE(1.7) 

where 

12 b’fi~~)=mf@(T’~~, vpp,pp-pf)d~+~zo,~20=I k$pf+c$,pp)dI’, 
s-2 r4 
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and @(VP,, We, p,-p/) is the conjugate dissipative potential related to Y(q,, qp, Q) by a 
Young-Fenhel [5] transform. 

Equations (1.6) for problem (1.10) have the form 

w = -a wa Pf,r, qpf = -a wa P~,~, e = a w (Pp-pfl 

A further six variational problems, which are equivalent to the solution of the system (1.1) 
(1.6), (1.7) are defined by changing from problem (1.9) to the dual problem in one or two 
variables. Assuming, for clarity, that the dissipative mechanisms are uncoupled, we will write 
the following characteristic variational problems 

where 

inf sup 13 (q~ pPs Q>, inf sup 14 Gl,fs Pp, Pf) 
~QEWM1.7) ~~E(l.7) qf Pf PpW.7) 

z3(~Pp,e> = I [~f(~)-~p(~Pp)+~Q(~)-~Pp1 da+z30 

n 

130 = I @?f,,dW q;,Ppdr 

rP rq 

14 (v,Pp,Pf)=j i’#f @)--$I (vppb-@Q @p-Pf)+qf VPfl dn-z2O 
cl 

The variable Q can be eliminated in the variational problems. Problems for the functionals 
ZI and Z3 using the constraint 

div e t div sp = 0 (1.11) 

can then be respectively written in the form 

inf 1: (WV Qp), inf sup 
~9pE(1.7).0.11) 

ZJ ($9 Pp) 
Sfa.7) PpEU.7) 

where 

Zi (qr, 9) = J [*f(v) + \Ir, (qp) + *Q (div q&l d ~‘2 +ZI o 
i-2 

zJ($,pp)= J [~f<~)-~p(vPp)+~(div~>-Ppdivvld~+Z~~ 
n 

2. We will now construct the variational principles of two-phase filtration and write the 
equations of continuity in medium f, in medium p, the relation between the pressures in the 
phases and the expression for the derivative of the entropy 

-div el = mfsf,t-QI, -div w = -mf sf,t-Q2 (2.1) 

-div qpl = mp sp,t + QI , -div QPZ = -mp sp,t t Q2 (2.2) 

Pfl -P/z = Pfc (Sfh Pp1 -Pp2 = Ppc (sp) (2.3) 
o=XY = X,Yl + . . . + X6Y6 

Here mf and mp are the porosities, Q, and Q2 are the crossflows of the first and second 
phases from medium p into medium f, S, and s,, are the saturations of the first phase, 
X=(X1,..., X,) are generalized forces, Y = (Y,, . . . , Y,) are generalized velocities; YI = qfl, 
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Y2=qIz, Y3=qpl, &-qppz, ys=Ql, &=Q,; &=-VP~, &=-VP~~, X~=--VP~,, %=-VP~Z, 

~s=Ppl-Pfl, &=Ppz-P/Z. Within the framework of the hypothesis of normal dissipation 
[4, 61, a dissipation potential Y(Y), exists, that is, a convex characteristic functional which is 
semicontinuous from below such that 

XEa * (Y) (2.4) 

where X is the subgradient of the functional Y(Y) at the point Y . The inverse relationship 
]6,71 

YEaa (2.5) 

follows from (2.4), where @(X) is the conjugate dissipation potential. Any of the relationships 
(2.4), (2.5) closes the system of equations (2.1)-(2.3). 

The following assertions are equivalent [6, 71: (1) X’EJY(Y’), (2) Y(Y)- X’Y attains a 
minimum with respect to Y at the point Y = Y’, (3) Y’ E J@(X’), and (4) a(X) - XY’ attains a 
minimum with respect to X at the point X=X’. They are the basis for constructing the 
variational principles. 

We shall henceforth assume the functionals Y(Y), a(X) to be smooth 

X = grad 4 (Y), Y = grad Qi (X) (2.6) 

Let us write the system of equations (2.1)-(2.3), (2.6) in the form 

~=-awavp~ or -vpF=awaw 

%k =-a@/av&& Or -vppk=awaqpk 

Qk=a@/a(p,k-Pfd Or Ppk-&%=a\k/aQk, k=i,2 

PHI -PZZ = pfc (sfh ppl -P~Z = ppc &I, div qf = Q, div sp = -Q 

(2.7) 

(2.8) 

-div 9fl = mfsf,*-Ql or -div w2 = -mf sf,,-Q2 

-div ‘lp 1 =mp sp,t + Ql or -div qr,2 = -mp sp,t + Q2 

<Q=Ql +Q2, e=qn+qfz, qp=qpl +qp2) 

(2.9) 

We will now construct a variational principle in the generalized velocities. It is seen from 
assertions (l)-(4) that, in the case of a process (x”, Y”) which actually occurs in the domain R, 
the value of Y”, which corresponds to x’, is determined from the solution of the problem 

inf& (y) = inf J [* (Y)--XOY] d 52 (2.10) 
Y Yc2 

which is equivalent to satisfying the governing relationships (2.7) and corresponds to the 
principle of minimum energy dissipation [2, 31 in general form. We will use variational 
problem (2.10) to construct a variational principle in which it should be sufficient to use 
boundary values of the quantity x” instead of a knowledge of x” in the whole domain Q to 
find Y’. Let us transform the integral ], XY di2, using the expressions for the pressures 

Pf = lfPlf + Wfl P2fa Pp = rp Plp +x1-IpI P2p 

where 1, can be equated to zero, unity, the saturation s, or the Backley-Leverett function, and 
likewise in the case of 1,. As a result, we obtain the functional 

I* (Y)=,l [\k(y)+v((l-lf)Pfhfl +v((1-~P)pPchl- 

-v(rf pfc) w-v (lp ppc) spz-Q1 ((l-zp)Pp,-(l-lr)Pfc) + 
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(2.11) 

Evaluating the minimum of functional (2.11), subject to constraints corresponding to the last 
two relationships in (2.8) and 

qfn = qh. 4pn =4in on r4 (2.12) 

is equivalent to solving the system of equations (2.7), (2.8) with boundary conditions (2.12) and 

Pf=?$ PpEpi on Ip (2.13) 

Similarly, from the problem 

infB2 (X) = infJ [@(X0()--~] dS1 
X X&-l 

(2.14) 

we construct the variational principle in the pressures 

inf 12 @f, Pp) = inf U@V)d~++1,,1 (2.15) 
pfi ~~~(2.13) P$ PpE (2.13) 

The equality 

inf 
YE(2.1),(2.12) 

11 (Y) = sup l-12 @f* PpN 
Pf PpW.13) 

holds. 
Problem (2.15) is dual to the problem 

inf 11 07 

YE(2.8), (2.12) 
(2.16) 

with respect to all of the variables Y1, . . . , Ye. On passing from problem (2.16) to the dual 
problem with respect to the different groups of variables Y,, . . . , Y6. we obtain a whole set of 
dual variational problems. 

In the case of linear laws of filtration (d’Arcy’s laws) and linear laws for the crossflows 

w = -&flc(k)ffi 6f) VPfi, %k = -#p/pk)fpk (sp) v ?$k 

Qk=bk(Ppk-@k)+Cke k=1,2 

which corresponds to quadratic functionals Y,, ‘y, and Yc, problem (2.16) reduces to the form 

where 

inf 11 (9, qp Q> 
sfi sp. QW2.8),(2.12) 

II (wqP,Q)=, [~f(e>+~p(qp)+~Q(Q)ld52+I,o 

R 

(2.17) 

qff(W) J .-!L- 
2 kfvf(Sfl 

1 e I2 + [Ff (Sf) VPfc-VOf PfcN qf 

*Q (Q)=!b +b2)-’ (Q2/2 - [b, ((l-~,)P,.-(l-~f)Ppfc)+ 

b2 Ujpfc-lp + (~1 ~211 Q> 
vf (sf) =frl (sf) + tin 1~2) ffz (sfh Ff(sf) =ffl ~~,-_)lcpf(sf) 
bc = bk (Sfs Sp), ck = ck (Sf, Sp) 
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k, and ZC, are the absolute permeabilities, & and & are the viscosities and f,.&,), fpk(s,) 
(k = 1, 2) are the relative phase permeabilities. The expressions for Y(q,), cpp(sp) and FP(sP) 
have an analogous form. 

The variational principle (2.17) is equivalent to solving a system of equations which has the 
form of (l.l), (1.6) with boundary conditions (1.7). Hence, all the dual variational principles 
have a form which is similar to the variational principles of steady single-phase filtration. 

The variational principles which have been obtained enable us to determine the velocity 
fields of the filtration and the crossflows, and the pressures at fixed saturations. Equations (2.9) 
serve to take account of the change in s/ and s,. 

No knowledge of the boundary conditions, which are necessary for solving the problem, is 
required when deriving the variational principles. The combinations of the required variables, 
specified on the boundary, for which a solution of the problem exists, are established from an 
analysis of the boundary integrals in the variational principles which are obtained by trans- 
forming the initial variational problems (2.1) and (2.14). 

As an example the integral Zm in variational principle (2.15) which is obtained from problem (2.14) 

ignoring the boundary conditions, must be taken over the entire boundary F that corresponds to the 

boundary conditions q, I,= qh and q, lr= q”, being satisfied. When account is taken of the boundary 
conditions (2.12) and (2.13), the integral la0 must be taken over the part of the boundary I-,, and the 
variables p, and pr satisfy condition (2.13) which is seen from the representation 

1 (@ia Pf + q;n p,) d I‘ = 
r (2.18) 

=I 

r4 
$,,Pf+q;,Pp)dr+ 1 ‘q;,,p;+q;,p;W’ 

rP 

The integral with respect to r,, in (2.18) is omitted as a constant quantity. When the equality 

p, = pp = p on r, holds, it is sufficient, when obtaining the solution, to specify the normal component of 

the velocity q = q, + qp 

I 1. = I q;pdr 
rq 

When p,=pp=p=const on r,, the specification of the flow rate G” on r, is sufficient for obtaining 

the solution 

Z,=pG 

where p is a quantity which is unknown though constant on F,, 

The author thanks A. I. Nikiforov for discussing the paper. 
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